The connectivity maps approach is a rank-based enrichment method utilizing the KS test (Lamb et al., 2006).
It measures the similarities of expression signatures based on the enrichment of up- and
down-regulated genes at the top and bottom of sorted (ranked) gene lists.
Query drug signatures
The following uses the 1,497 age-related gene expression signatures from Peters et al.
(2015) as a query against the CMAP signatures. The results are sorted by the
ES Distance and the top scoring 20 drugs are given below. The full result table is
written to a file named drugcmap2.xls
.
library(DrugVsDisease)
PMID26490707 <- read.delim("./data/PMID26490707_S1.xls", comment="#", check.names=FALSE)
data(drugRL)
PMID26490707sub <- PMID26490707[PMID26490707[,"NEW-Gene-ID"] %in% rownames(drugRL),]
PMID26490707sub <- PMID26490707sub[order(PMID26490707sub$Zscore, decreasing=TRUE),]
PMID26490707sub <- rbind(head(PMID26490707sub, 100), tail(PMID26490707sub, 100)) # Subsets to top 200 DEGs
testprofiles <- list(ranklist=matrix(PMID26490707sub$Zscore, dimnames=list(PMID26490707sub[,"NEW-Gene-ID"])),
pvalues=matrix(PMID26490707sub$P, dimnames=list(PMID26490707sub[,"NEW-Gene-ID"])))
drugcmap <- classifyprofile(data=testprofiles$ranklist, case="disease", signif.fdr=0.5, no.signif=20)
drugcmap2 <- classifyprofile(data=testprofiles$ranklist, case="disease",
pvalues=testprofiles$pvalues, cytoout=FALSE, type="dynamic",
dynamic.fdr=5, signif.fdr=5, adj="BH", no.signif=1000)
## Number of Significant results greater than 1000 Using top 1000 hits - consider using average linkage instead
write.table(drugcmap2, file="./results/drugcmap2.xls", quote=FALSE, sep="\t", col.names = NA)
drugcmap2[[1]][1:20,]
## Drug ES Distance Cluster RPS
## dipivefrine dipivefrine 0.660 62 1
## sulfathiazole sulfathiazole 0.735 38 1
## fludroxycortide fludroxycortide 0.740 95 1
## lobeline lobeline 0.740 38 1
## naftifine naftifine 0.740 42 -1
## phenanthridinone phenanthridinone 0.750 99 -1
## ethoxyquin ethoxyquin 0.755 27 1
## pentetrazol pentetrazol 0.755 54 1
## fulvestrant fulvestrant 0.765 22 1
## MS-275 MS-275 0.770 84 1
## sirolimus sirolimus 0.770 98 1
## physostigmine physostigmine 0.775 1 1
## thiethylperazine thiethylperazine 0.775 1 1
## alvespimycin alvespimycin 0.780 22 1
## naltrexone naltrexone 0.780 78 1
## cimetidine cimetidine 0.780 49 1
## acebutolol acebutolol 0.785 58 1
## metolazone metolazone 0.785 68 1
## troleandomycin troleandomycin 0.785 45 1
## S-propranolol S-propranolol 0.790 76 1
Query disease signatures
The same query is performed against a reference set of disease expression signatures.
The results are sorted by the ES Distance and the top scoring 20 drugs are given below.
The full result table is written to a file named diseasecmap2.xls
.
PMID26490707 <- read.delim("./data/PMID26490707_S1.xls", comment="#", check.names=FALSE)
data(diseaseRL)
PMID26490707sub <- PMID26490707[PMID26490707[,"NEW-Gene-ID"] %in% rownames(diseaseRL),]
testprofiles <- list(ranklist=matrix(PMID26490707sub$Zscore, dimnames=list(PMID26490707sub[,"NEW-Gene-ID"])),
pvalues=matrix(PMID26490707sub$P, dimnames=list(PMID26490707sub[,"NEW-Gene-ID"])))
diseasecmap <- classifyprofile(data=testprofiles$ranklist, case="drug", signif.fdr=0.5, no.signif=20)
## Number of Significant results greater than 20 Using top 20 hits - consider using average linkage instead
diseasecmap2 <- classifyprofile(data=testprofiles$ranklist, case="drug",
pvalues=testprofiles$pvalues, cytoout=FALSE, type="dynamic",
dynamic.fdr=5, adj="BH", no.signif=100)
write.table(diseasecmap2, file="./results/diseasecmap2.xls", quote=FALSE, sep="\t", col.names = NA)
diseasecmap2[[1]][1:20,]
## Disease ES Distance Cluster RPS
## sarcoidosis sarcoidosis 0.3630021 2 1
## sepsis sepsis 0.4779160 5 -1
## aseptic-necrosis aseptic-necrosis 0.5624186 2 1
## inflammatory-bowel-disease inflammatory-bowel-disease 0.5738416 2 1
## myelodysplastic-syndrome myelodysplastic-syndrome 0.6118810 5 -1
## acute-nonlymphocytic-leukemia acute-nonlymphocytic-leukemia 0.6428131 2 1
## colorectal-cancer colorectal-cancer 0.6824003 3 -1
## small-cell-lung-cancer small-cell-lung-cancer 0.7086938 4 -1
## periodontitis periodontitis 0.7562997 1 1
## soft-tissue-sarcoma soft-tissue-sarcoma 0.7610299 4 -1
## schizophrenia schizophrenia 0.7628188 6 1
## multiple-sclerosis multiple-sclerosis 0.7704229 5 -1
## juvenile-rheumatoid-arthritis juvenile-rheumatoid-arthritis 0.7825401 2 1
## interstitial-cystitis interstitial-cystitis 0.7862240 3 1
## osteoporosis osteoporosis 0.7889821 5 -1
## ulcerative-colitis ulcerative-colitis 0.7930566 3 1
## parkinson-s-disease parkinson-s-disease 0.7952601 6 1
## mania mania 0.8068711 6 1
## prostate-cancer prostate-cancer 0.8263851 4 -1
## bladder-cancer bladder-cancer 0.8314094 4 -1