- More important than
qplot to access full functionality of ggplot2
- Main arguments
- data set, usually a
data.frame or tibble
- aesthetic mappings provided by
aes function
- General
ggplot syntax
ggplot(data, aes(...)) + geom() + ... + stat() + ...
- Layer specifications
geom(mapping, data, ..., geom, position)
stat(mapping, data, ..., stat, position)
- Additional components
aes() mappings can be passed on to all components (ggplot, geom, etc.). Effects are global when passed on to ggplot() and local for other components.
x, y
color: grouping vector (factor)
group: grouping vector (factor)
Changing Plotting Themes in ggplot
- Theme settings can be accessed with
theme_get()
- Their settings can be changed with
theme()
Example how to change background color to white
... + theme(panel.background=element_rect(fill = "white", colour = "black"))
Storing ggplot Specifications
Plots and layers can be stored in variables
p <- ggplot(dsmall, aes(carat, price)) + geom_point()
p # or print(p)
Returns information about data and aesthetic mappings followed by each layer
summary(p)
Print dots with different sizes and colors
bestfit <- geom_smooth(method = "lm", se = F, color = alpha("steelblue", 0.5), size = 2)
p + bestfit # Plot with custom regression line
Syntax to pass on other data sets
p %+% diamonds[sample(nrow(diamonds), 100),]
Saves plot stored in variable p to file
ggsave(p, file="myplot.pdf")
Standard R export functons for graphics work as well (see here).
ggplot: scatter plots
Basic example
set.seed(1410)
dsmall <- as.data.frame(diamonds[sample(nrow(diamonds), 1000), ])
p <- ggplot(dsmall, aes(carat, price, color=color)) +
geom_point(size=4)
print(p)

Interactive version of above plot can be generated with the ggplotly function from the plotly package.
library(plotly)
ggplotly(p)
Regression line
p <- ggplot(dsmall, aes(carat, price)) + geom_point() +
geom_smooth(method="lm", se=FALSE) +
theme(panel.background=element_rect(fill = "white", colour = "black"))
print(p)
## `geom_smooth()` using formula = 'y ~ x'

Several regression lines
p <- ggplot(dsmall, aes(carat, price, group=color)) +
geom_point(aes(color=color), size=2) +
geom_smooth(aes(color=color), method = "lm", se=FALSE)
print(p)
## `geom_smooth()` using formula = 'y ~ x'

Local regression curve (loess)
p <- ggplot(dsmall, aes(carat, price)) + geom_point() + geom_smooth()
print(p) # Setting se=FALSE removes error shade
## `geom_smooth()` using method = 'gam' and formula = 'y ~ s(x, bs = "cs")'

ggplot: line plot
p <- ggplot(iris, aes(Petal.Length, Petal.Width, group=Species,
color=Species)) + geom_line()
print(p)

Faceting
p <- ggplot(iris, aes(Sepal.Length, Sepal.Width)) +
geom_line(aes(color=Species), size=1) +
facet_wrap(~Species, ncol=1)
## Warning: Using `size` aesthetic for lines was deprecated in ggplot2 3.4.0.
## ℹ Please use `linewidth` instead.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was generated.
print(p)

Exercise 3
Scatter plots with ggplot2
- Task 1: Generate scatter plot for first two columns in
iris data frame and color dots by its Species column.
- Task 2: Use the
xlim and ylim arguments to set limits on the x- and y-axes so that all data points are restricted to the left bottom quadrant of the plot.
- Task 3: Generate corresponding line plot with faceting presenting the individual data sets in saparate plots.
Structure of iris data set
class(iris)
## [1] "data.frame"
iris[1:4,]
table(iris$Species)
##
## setosa versicolor virginica
## 50 50 50
Bar Plots
Sample Set: the following transforms the iris data set into a ggplot2-friendly format.
Calculate mean values for aggregates given by Species column in iris data set
iris_mean <- aggregate(iris[,1:4], by=list(Species=iris$Species), FUN=mean)
Calculate standard deviations for aggregates given by Species column in iris data set
iris_sd <- aggregate(iris[,1:4], by=list(Species=iris$Species), FUN=sd)
Reformat iris_mean with melt from wide to long form as expected by ggplot2. Newer alternatives for restructuring data.frames and tibbles from wide into long form use the gather and pivot_longer functions defined by the tidyr package. Their usage is shown below as well. The functions pivot_longer and pivot_wider are expected to provide the most flexible long-term solution, but may not work in older R versions.
library(reshape2) # Defines melt function
df_mean <- melt(iris_mean, id.vars=c("Species"), variable.name = "Samples", value.name="Values")
df_mean2 <- tidyr::gather(iris_mean, !Species, key = "Samples", value = "Values")
df_mean3 <- tidyr::pivot_longer(iris_mean, !Species, names_to="Samples", values_to="Values")
Reformat iris_sd with melt
df_sd <- melt(iris_sd, id.vars=c("Species"), variable.name = "Samples", value.name="Values")
Define standard deviation limits
limits <- aes(ymax = df_mean[,"Values"] + df_sd[,"Values"], ymin=df_mean[,"Values"] - df_sd[,"Values"])
Verical orientation
p <- ggplot(df_mean, aes(Samples, Values, fill = Species)) +
geom_bar(position="dodge", stat="identity")
print(p)

To enforce that the bars are plotted in the order specified in the input data, one can instruct ggplot to do so by turning the corresponding column (here Species) into an ordered factor as follows.
df_mean$Species <- factor(df_mean$Species, levels=unique(df_mean$Species), ordered=TRUE)
In the above example this is not necessary since ggplot uses this order already.
Horizontal orientation
p <- ggplot(df_mean, aes(Samples, Values, fill = Species)) +
geom_bar(position="dodge", stat="identity") + coord_flip() +
theme(axis.text.y=element_text(angle=0, hjust=1))
print(p)

Faceting
p <- ggplot(df_mean, aes(Samples, Values)) + geom_bar(aes(fill = Species), stat="identity") +
facet_wrap(~Species, ncol=1)
print(p)
Error bars
p <- ggplot(df_mean, aes(Samples, Values, fill = Species)) +
geom_bar(position="dodge", stat="identity") +
geom_errorbar(limits, position="dodge")
print(p)

Mirrored
df <- data.frame(group = rep(c("Above", "Below"), each=10), x = rep(1:10, 2), y = c(runif(10, 0, 1), runif(10, -1, 0)))
p <- ggplot(df, aes(x=x, y=y, fill=group)) +
geom_col()
print(p)

Changing Color Settings
library(RColorBrewer)
# display.brewer.all()
p <- ggplot(df_mean, aes(Samples, Values, fill=Species, color=Species)) +
geom_bar(position="dodge", stat="identity") + geom_errorbar(limits, position="dodge") +
scale_fill_brewer(palette="Blues") + scale_color_brewer(palette = "Greys")
print(p)

Using standard R color theme
p <- ggplot(df_mean, aes(Samples, Values, fill=Species, color=Species)) +
geom_bar(position="dodge", stat="identity") + geom_errorbar(limits, position="dodge") +
scale_fill_manual(values=c("red", "green3", "blue")) +
scale_color_manual(values=c("red", "green3", "blue"))
print(p)

Exercise 4
Bar plots
- Task 1: Calculate the mean values for the
Species components of the first four columns in the iris data set. Use the melt function from the reshape2 package to bring the data into the expected format for ggplot.
- Task 2: Generate two bar plots: one with stacked bars and one with horizontally arranged bars.
Structure of iris data set
class(iris)
## [1] "data.frame"
iris[1:4,]
table(iris$Species)
##
## setosa versicolor virginica
## 50 50 50
Data reformatting example
Here for line plot
y <- matrix(rnorm(500), 100, 5, dimnames=list(paste("g", 1:100, sep=""), paste("Sample", 1:5, sep="")))
y <- data.frame(Position=1:length(y[,1]), y)
y[1:4, ] # First rows of input format expected by melt()
df <- melt(y, id.vars=c("Position"), variable.name = "Samples", value.name="Values")
p <- ggplot(df, aes(Position, Values)) + geom_line(aes(color=Samples)) + facet_wrap(~Samples, ncol=1)
print(p)

Same data can be represented in box plot as follows
ggplot(df, aes(Samples, Values, fill=Samples)) + geom_boxplot() + geom_jitter(color="darkgrey")
Jitter Plots
p <- ggplot(dsmall, aes(color, price/carat)) +
geom_jitter(alpha = I(1 / 2), aes(color=color))
print(p)

Box plots
p <- ggplot(dsmall, aes(color, price/carat, fill=color)) + geom_boxplot()
print(p)

Violin plots
p <- ggplot(dsmall, aes(color, price/carat, fill=color)) + geom_violin()
print(p)

Same violin plot as interactive plot generated with ggplotly, where the actual data points are shown as well by including geom_jitter().
p <- ggplot(dsmall, aes(color, price/carat, fill=color)) + geom_violin() + geom_jitter(aes(color=color))
ggplotly(p)
Density plots
Line coloring
p <- ggplot(dsmall, aes(carat)) + geom_density(aes(color = color))
print(p)

Area coloring
p <- ggplot(dsmall, aes(carat)) + geom_density(aes(fill = color))
print(p)

Histograms
p <- ggplot(iris, aes(x=Sepal.Width)) +
geom_histogram(aes(y = ..density.., fill = ..count..), binwidth=0.2) +
geom_density()
print(p)
## Warning: The dot-dot notation (`..density..`) was deprecated in ggplot2 3.4.0.
## ℹ Please use `after_stat(density)` instead.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was generated.

Pie Chart
df <- data.frame(variable=rep(c("cat", "mouse", "dog", "bird", "fly")),
value=c(1,3,3,4,2))
p <- ggplot(df, aes(x = "", y = value, fill = variable)) +
geom_bar(width = 1, stat="identity") +
coord_polar("y", start=pi / 3) + ggtitle("Pie Chart")
print(p)

Wind Rose Pie Chart
p <- ggplot(df, aes(x = variable, y = value, fill = variable)) +
geom_bar(width = 1, stat="identity") +
coord_polar("y", start=pi / 3) +
ggtitle("Pie Chart")
print(p)

Arranging Graphics on Page
Using grid package
library(grid)
a <- ggplot(dsmall, aes(color, price/carat)) + geom_jitter(size=4, alpha = I(1 / 1.5), aes(color=color))
b <- ggplot(dsmall, aes(color, price/carat, color=color)) + geom_boxplot()
c <- ggplot(dsmall, aes(color, price/carat, fill=color)) + geom_boxplot() + theme(legend.position = "none")
grid.newpage() # Open a new page on grid device
pushViewport(viewport(layout = grid.layout(2, 2))) # Assign to device viewport with 2 by 2 grid layout
print(a, vp = viewport(layout.pos.row = 1, layout.pos.col = 1:2))
print(b, vp = viewport(layout.pos.row = 2, layout.pos.col = 1))
print(c, vp = viewport(layout.pos.row = 2, layout.pos.col = 2, width=0.3, height=0.3, x=0.8, y=0.8))

Using gridExtra package
library(gridExtra)
grid.arrange(a, b, c, nrow = 2, ncol=2)

Also see patchwork in ggplot2 book here.
Inserting Graphics into Plots
library(grid)
print(a)
print(b, vp=viewport(width=0.3, height=0.3, x=0.8, y=0.8))
